Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1160050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881692

RESUMO

Introduction: This prospective cohort study assessed the effects of chronic hypoxaemia due to high-altitude residency on the cerebral tissue oxygenation (CTO) and cerebrovascular reactivity. Methods: Highlanders, born, raised, and currently living above 2,500 m, without cardiopulmonary disease, participated in a prospective cohort study from 2012 until 2017. The measurements were performed at 3,250 m. After 20 min of rest in supine position while breathing ambient air (FiO2 0.21) or oxygen (FiO2 1.0) in random order, guided hyperventilation followed under the corresponding gas mixture. Finger pulse oximetry (SpO2) and cerebral near-infrared spectroscopy assessing CTO and change in cerebral haemoglobin concentration (cHb), a surrogate of cerebral blood volume changes and cerebrovascular reactivity, were applied. Arterial blood gases were obtained during ambient air breathing. Results: Fifty three highlanders, aged 50 ± 2 years, participated in 2017 and 2012. While breathing air in 2017 vs. 2012, PaO2 was reduced, mean ± SE, 7.40 ± 0.13 vs. 7.84 ± 0.13 kPa; heart rate was increased 77 ± 1 vs. 70 ± 1 bpm (p < 0.05) but CTO remained unchanged, 67.2% ± 0.7% vs. 67.4% ± 0.7%. With oxygen, SpO2 and CTO increased similarly in 2017 and 2012, by a mean (95% CI) of 8.3% (7.5-9.1) vs. 8.5% (7.7-9.3) in SpO2, and 5.5% (4.1-7.0) vs. 4.5% (3.0-6.0) in CTO, respectively. Hyperventilation resulted in less reduction of cHb in 2017 vs. 2012, mean difference (95% CI) in change with air 2.0 U/L (0.3-3.6); with oxygen, 2.1 U/L (0.5-3.7). Conclusion: Within 5 years, CTO in highlanders was preserved despite a decreased PaO2. As this was associated with a reduced response of cerebral blood volume to hypocapnia, adaptation of cerebrovascular reactivity might have occurred.

2.
J Clin Med ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769447

RESUMO

Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): -7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: -4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients.

3.
Sleep ; 46(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356042

RESUMO

STUDY OBJECTIVES: To assess altitude-induced sleep and nocturnal breathing disturbances in healthy lowlanders 40 y of age or older and the effects of preventive acetazolamide treatment. METHODS: Clinical examinations and polysomnography were performed at 760 m and in the first night after ascent to 3100 m in a subsample of participants of a larger trial evaluating altitude illness. Participants were randomized 1:1 to treatment with acetazolamide (375 mg/day) or placebo, starting 24 h before and while staying at 3100 m. The main outcomes were indices of sleep structure, oxygenation, and apnea/hypopnea index (AHI). RESULTS: Per protocol analysis included 86 participants (mean ± SE 53 ± 7 y old, 66% female). In 43 individuals randomized to placebo, mean nocturnal pulse oximetry (SpO2) was 94.0 ± 0.4% at 760 m and 86.7 ± 0.4% at 3100 m, with mean change (95%CI) -7.3% (-8.0 to -6.5); oxygen desaturation index (ODI) was 5.0 ± 2.3 at 760 m and 29.2 ± 2.3 at 3100 m, change 24.2/h (18.8 to 24.5); AHI was 11.3 ± 2.4/h at 760 m and 23.5 ± 2.4/h at 3100 m, change 12.2/h (7.3 to 17.0). In 43 individuals randomized to acetazolamide, altitude-induced changes were mitigated. Mean differences (Δ, 95%CI) in altitude-induced changes were: ΔSpO2 2.3% (1.3 to 3.4), ΔODI -15.0/h (-22.6 to -7.4), ΔAHI -11.4/h (-18.3 to -4.6). Total sleep time, sleep efficiency, and N3-sleep fraction decreased with an ascent to 3100 m under placebo by 40 min (17 to 60), 5% (2 to 8), and 6% (2 to 11), respectively. Acetazolamide did not significantly change these outcomes. CONCLUSIONS: During a night at 3100 m, healthy lowlanders aged 40 y or older revealed hypoxemia, sleep apnea, and disturbed sleep. Preventive acetazolamide treatment improved oxygenation and nocturnal breathing but had no effect on sleep duration and structure. TRIAL REGISTRATION: The trial is registered at Clinical Trials, https://clinicaltrials.gov, NCT03561675.


Assuntos
Acetazolamida , Altitude , Humanos , Feminino , Masculino , Acetazolamida/uso terapêutico , Sono , Respiração
4.
NEJM Evid ; 1(1): EVIDoa2100006, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296630

RESUMO

Acetazolamide to Prevent Adverse Altitude Effects Furian and colleagues report on the results of two randomized controlled trials testing the use of acetazolamide to prevent the adverse effects of altitude on healthy older persons and in people with COPD. They find that acetazolamide decreased the incidence of altitude related adverse health events (primarily hypoxemia) in both populations with no evidence of adverse events.


Assuntos
Acetazolamida , Doença da Altitude , Altitude , Inibidores da Anidrase Carbônica , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Acetazolamida/uso terapêutico , Doença da Altitude/prevenção & controle , Doença da Altitude/tratamento farmacológico , Inibidores da Anidrase Carbônica/uso terapêutico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/efeitos adversos , Hipóxia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
5.
Front Med (Lausanne) ; 7: 595450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33693009

RESUMO

Background: High-flow oxygen therapy (HFOT) provides oxygen-enriched, humidified, and heated air at high flow rates via nasal cannula. It could be an alternative to low-flow oxygen therapy (LFOT) which is commonly used by patients with chronic obstructive pulmonary disease (COPD) during exercise training. Research Question: We evaluated the hypothesis that HFOT improves exercise endurance in COPD patients compared to LFOT. Methods: Patients with stable COPD, FEV1 40-80% predicted, resting pulse oximetry (SpO2) ≥92%, performed two constant-load cycling exercise tests to exhaustion at 75% of maximal work rate on two different days, using LFOT (3 L/min) and HFOT (60 L/min, FiO2 0.45) in randomized order according to a crossover design. Primary outcome was exercise endurance time, further outcomes were SpO2, breath rate and dyspnea. Results: In 79 randomized patients, mean ± SD age 58 ± 9 y, FEV1 63 ± 9% predicted, GOLD grades 2-3, resting PaO2 9.4 ± 1.0 kPa, intention-to-treat analysis revealed an endurance time of 688 ± 463 s with LFOT and 773 ± 471 s with HFOT, mean difference 85 s (95% CI: 7 to 164, P = 0.034), relative increase of 13% (95% CI: 1 to 28). At isotime, patients had lower respiratory rate and higher SpO2 with HFOT. At end-exercise, SpO2 was higher by 2% (95% CI: 2 to 2), and Borg CR10 dyspnea scores were lower by 0.8 points (95% CI: 0.3 to 1.2) compared to LFOT. Interpretation: In mildly hypoxemic patients with COPD, HFOT improved endurance time in association with higher arterial oxygen saturation, reduced respiratory rate and less dyspnea compared to LFOT. Therefore, HFOT is promising for enhancing exercise performance in COPD. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03955770.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...